On Combining Classifiers
نویسندگان
چکیده
We develop a common theoretical framework for combining classifiers which use distinct pattern representations and show that many existing schemes can be considered as special cases of compound classification where all the pattern representations are used jointly to make a decision. An experimental comparison of various classifier combination schemes demonstrates that the combination rule developed under the most restrictive assumptions—the sum rule—outperforms other classifier combinations schemes. A sensitivity analysis of the various schemes to estimation errors is carried out to show that this finding can be justified theoretically.
منابع مشابه
استفاده از یادگیری همبستگی منفی در بهبود کارایی ترکیب شبکه های عصبی
This paper investigates the effect of diversity caused by Negative Correlation Learning(NCL) in the combination of neural classifiers and presents an efficient way to improve combining performance. Decision Templates and Averaging, as two non-trainable combining methods and Stacked Generalization as a trainable combiner are investigated in our experiments . Utilizing NCL for diversifying the ba...
متن کاملOn Combining Multiple Classifiers Using an Evidential Approach
Combining multiple classifiers via combining schemes or meta-learners has led to substantial improvements in many classification problems. One of the challenging tasks is to choose appropriate combining schemes and classifiers involved in an ensemble of classifiers. In this paper we propose a novel evidential approach to combining decisions given by multiple classifiers. We develop a novel evid...
متن کاملExperiments with Classifier Combining Rules
A large experiment on combining classifiers is reported and discussed. It includes, both, the combination of different classifiers on the same feature set and the combination of classifiers on different feature sets. Various fixed and trained combining rules are used. It is shown that there is no overall winning combining rule and that bad classifiers as well as bad feature sets may contain val...
متن کاملتشخیص آریتمی انقباضات زودرس بطنی در سیگنال الکتریکی قلب با استفاده ازترکیب طبقهبندها
Cardiovascular diseases are the most dangerous diseases and one of the biggest causes of fatality all over the world. One of the most common cardiac arrhythmias which has been considered by physicians is premature ventricular contraction (PVC) arrhythmia. Detecting this type of arrhythmia due to its abundance of all ages, is particularly important. ECG signal recording is a non-invasive, popula...
متن کاملExperiments on Combining Classifiers
In this paper, experiments on various classifiers and combining these classifiers are done, reported and analyzed. Combining the classifiers means having the single classifiers support each other in making a decision, instead of having only a single classifier’s decision as the final decision. The base experiment involves, both, applying different single classifiers on a dataset and applying th...
متن کاملCombining Classifier Guided by Semi-Supervision
The article suggests an algorithm for regular classifier ensemble methodology. The proposed methodology is based on possibilistic aggregation to classify samples. The argued method optimizes an objective function that combines environment recognition, multi-criteria aggregation term and a learning term. The optimization aims at learning backgrounds as solid clusters in subspaces of the high...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- IEEE Trans. Pattern Anal. Mach. Intell.
دوره 20 شماره
صفحات -
تاریخ انتشار 1998